Fuzzy Miner - A Fuzzy System for Solving Pattern Classification Problems
نویسندگان
چکیده
The purpose of this paper is to study the problem of pattern classification as this is presented in the context of data mining. Among the various approaches we focus on the use of Fuzzy Logic for pattern classification, due to its close relation to human thinking. More specifically, this paper presents a heuristic fuzzy method for the classification of numerical data, followed by the design and the implementation of its corresponding tool ( Fuzzy Miner). The initial idea comes from the fact that fuzzy systems are universal approximators of any real continuous function. An approximation method coming from the domain of fuzzy control is appropriately adjusted into pattern classification and an “adaptive“ procedure is proposed and developed for deriving highly accurate linguistic if-then rules. Extensive simulation tests are performed to demonstrate the performance and advantages of Fuzzy Miner, as well as its potential commercial benefits over a real world scenarion.
منابع مشابه
FUZZY GRAVITATIONAL SEARCH ALGORITHM AN APPROACH FOR DATA MINING
The concept of intelligently controlling the search process of gravitational search algorithm (GSA) is introduced to develop a novel data mining technique. The proposed method is called fuzzy GSA miner (FGSA-miner). At first a fuzzy controller is designed for adaptively controlling the gravitational coefficient and the number of effective objects, as two important parameters which play major ro...
متن کاملFuzzy Miner: Extracting Fuzzy Rules from Numerical Patterns
We study the problem of classification as this is presented in the context of data mining. Among the various approaches that are investigated, we focus on the use of Fuzzy Logic for pattern classification, due to its close relation to human thinking. More specifically, this paper presents a heuristic fuzzy method for the classification of numerical data, followed by the design and the implement...
متن کاملAn Improved Fuzzy Neural Network for Solving Uncertainty in Pattern Classification and Identification
Dealing with uncertainty is one of the most critical problems in complicatedpattern recognition subjects. In this paper, we modify the structure of a useful UnsupervisedFuzzy Neural Network (UFNN) of Kwan and Cai, and compose a new FNN with 6 types offuzzy neurons and its associated self organizing supervised learning algorithm. Thisimproved five-layer feed forward Supervised Fuzzy Neural Netwo...
متن کاملUsing finite difference method for solving linear two-point fuzzy boundary value problems based on extension principle
In this paper an efficient Algorithm based on Zadeh's extension principle has been investigated to approximate fuzzy solution of two-point fuzzy boundary value problems, with fuzzy boundary values. We use finite difference method in term of the upper bound and lower bound of $r$- level of fuzzy boundary values. The proposed approach gives a linear system with crisp tridiagonal coefficients matr...
متن کاملModified CLPSO-based fuzzy classification System: Color Image Segmentation
Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorr...
متن کامل